skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Han, Eunkyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present average magnetic field measurements derived from high-resolution near-infrared IGRINS spectra of a carefully selected sample of 28 M dwarfs. All 28 have reported magnetic field strengths in the literature. The main goal of this work is to investigate the accuracy, precision, and limitations of magnetic field measurements from IGRINS spectra. This investigation is critical to validating the robustness of our methods before we apply them to over 500 IGRINS-observed M dwarfs in the next paper of the series. We used the Zeeman broadening and Zeeman intensification methods to measure average magnetic fields. Our measurements are all consistent with the previous measurements to within ±1 kG, with an average offset of −0.17 kG for the broadening method and +0.19 kG for the intensification method. We find that the detection limit of IGRINS is ∼0.9 kG with the Zeeman broadening method, in accordance with the instrumental broadening limit of the spectrograph. With the Zeeman intensification method, we are able to detect down to ∼0.7 kG with a signal-to-noise ratio of 150 or greater. We find an advantage of using the intensification method over the broadening method, which is the ability to reliably measure the magnetic field strengths of stars that are cooler than 3100 K where the spectrum becomes dominated by molecular lines. Therefore, the intensification method is crucial to study stellar magnetism of late-M and brown dwarfs. 
    more » « less
  2. Abstract We used the Immersion GRating Infrared Spectrometer (IGRINS) to determine fundamental parameters for 61 K- and M-type young stellar objects (YSOs) located in the Ophiuchus and Upper Scorpius star-forming regions. We employed synthetic spectra and a Markov chain Monte Carlo approach to fit specificK-band spectral regions and determine the photospheric temperature (T), surface gravity ( log g ), magnetic field strength (B), projected rotational velocity ( v sin i ), andK-band veiling (rK). We determinedBfor ∼46% of our sample. Stellar parameters were compared to the results from Taurus-Auriga and the TW Hydrae association presented in Paper I of this series. We classified all the YSOs in the IGRINS survey with infrared spectral indices from Two Micron All Sky Survey and Wide-field Infrared Survey Explorer photometry between 2 and 24μm. We found that Class II YSOs typically have lower log g and v sin i , similarB, and higherK-band veiling than their Class III counterparts. Additionally, we determined the stellar parameters for a sample of K and M field stars also observed with IGRINS. We have identified intrinsic similarities and differences at different evolutionary stages with our homogeneous determination of stellar parameters in the IGRINS YSO survey. Considering log g as a proxy for age, we found that the Ophiuchus and Taurus samples have a similar age. We also find that Upper Scorpius and TWA YSOs have similar ages, and are more evolved than Ophiuchus/Taurus YSOs. 
    more » « less